Orchestrating ETL for a User-Facing Portal: An Integrated Narrative

At the heart of our portal lies a system designed for flexibility, scalability, and clarity of workflow:
an ETL pipeline that can seamlessly extract data from multiple sources, transform it according to
business and clinical rules, and load it into a target system where it can be consumed by users
in near real-time. The orchestration of this system is not merely a sequence of scripts; itis a
thoughtfully designed framework that abstracts complexity and provides a robust backbone for
the portal.

Extraction Layer

The process begins at the extraction layer. Users may supply data from a variety of sources:
relational databases such as MySQL, RESTful APIs, or local files in CSV or JSON format. Each
source is defined in a structured dictionary that describes its type and configuration details, such
as connection parameters or file paths. Behind the scenes, the system relies on a registry of
extractors, each implementing a consistent run method. This abstraction allows the
orchestration engine to handle a new data source without altering the core workflow — it simply
looks up the appropriate extractor by type and invokes it. This design elegantly decouples the
specifics of data access from the ETL process itself, supporting both modularity and future
extensibility.

Transformation Layer

Once data is extracted, it often requires transformation before it can be useful for the portal.
Transformations range from normalizing field names and types to constructing domain-specific
structures, such as FHIR-compliant Patient or Immunization resources. Each transform is
encapsulated in a class with a standard run(data) interface, ensuring that the orchestration
engine can apply any transformation without concerning itself with the implementation details.
This approach is particularly powerful in a healthcare context, where different tables or record
types may require specialized logic. For example, patient records are carefully mapped to FHIR
Patient objects with identifiers, addresses, and contact points, while immunization records are
mapped to FHIR Immunization resources.

Other transformation outputs, such as CSV, SQL inserts, JSON, or Parquet, can be selected
depending on downstream analytic needs. The dashboard provides users with a guided
interface to choose the transformation method, ensuring that data is correctly prepared before
analytics. This combination of user guidance and backend flexibility ensures the right data is
available in the right format.

Loading Layer

After transformation, the ETL system proceeds to the loading phase. Loaders, also defined in a
registry and adhering to the same run contract, handle the persistence of data into target
systems. This could be writing to a relational database, saving to a local file for downstream

processing, or uploading to a cloud-based object store such as S3. The abstraction ensures that
the orchestrator need only know what type of loader to invoke and what configuration to pass,
leaving the mechanics of writing data encapsulated within the loader class. Loaders also return
metadata about the operation — such as the number of records processed or the location of the
stored data — which can be surfaced to the portal for user feedback and operational monitoring.

Orchestration with Celery

At the technical center of this orchestration is Celery, which coordinates ETL tasks. Celery
executes tasks asynchronously or in parallel, resolving the appropriate extractor, transformer,
and loader from their respective registries and applying them in order. Users interact with the
portal through the dashboard to initiate ETL operations — selecting sources, transformations,
and repositories — while Celery executes the workflow behind the scenes, returning structured
results including status, record counts, and destination details.

Scalability and Modularity

This architecture supports scalability, modularity, and maintainability. Adding a new data source,
introducing a new transformation, or extending the portal to write to a new type of repository
requires only the creation of a new class that adheres to the run interface and an update to the
relevant registry. The orchestrator itself remains untouched. This separation of concerns allows
a complex healthcare portal to remain reliable and user-friendly, despite the intricacy of the
underlying data landscape.

Dashboard Integration

The dashboard plays a central role in connecting the user to the ETL system. It abstracts
complexity, guiding users step-by-step through the configuration process:
e Selecting data sources

e Choosing transformations
e Defining repositories
e Selecting standard or custom analytics

It ensures the user interacts with a simple interface, while the ETL system handles the heavy
lifting in the background.

Figure: ETL Workflow with User-Facing Dashboard

The dashboard guides users through the ETL workflow, allowing selection of data sources,
transformations, repositories, and analytics options. Behind the scenes, Celery orchestrates
extraction, transformation, and loading tasks, ensuring data is processed asynchronously and
accurately. This design separates user interaction from execution, providing simplicity and clarity
for the user while maintaining modularity, scalability, and reliability in the underlying ETL
pipeline.

Diagram Layout (for visual reference):
+ +

| User Dashboard |
I I

| 1. Source Selection |
| 2. Transformation |

| 3. Repository |
| 4. Analytics |
+ +
I
v
+
Celery |

Extract Tasks |
Transform Tasks |
Load Tasks |
| (Async / Parallel) |
+ +

Vv

+
|
-
-

+
Repository /|
Analytics Output |
+

+ — — +

Conclusion

This sequence of tasks encapsulated in the ETL workflow empowers clinicians to investigate
and obtain answers to their data questions at a reasonable cost, through PyxGen'’s forthcoming
analytics Software-as-a-Service. Designed specifically for small and medium organizations that
lack the resources of large IT departments, PyxGen levels the playing field, providing access to
advanced data and interoperability tools without the need for a large in-house staff.

PyxGen has completed the design of the user interface that overlays the technical architecture,
creating a clean, guided experience for subscribers. The next phase focuses on implementing
the wiring necessary to support real-world use cases, including integration and user testing
processes. Each subscriber has unique configuration needs, which are handled via a
configuration profile accessible at login. These profiles securely store credentials and
system-specific settings, ensuring that the ETL processes operate correctly for each
environment.

The core ETL processes are standards-compliant, guaranteeing reliable data extraction,
transformation, and loading. On the analytics side, clinician input drives the generation of
meaningful reports. A basic report provides insights such as record counts, types of records,
source distribution, and demographic statistics. Custom reports, on the other hand, require

closer collaboration with clinicians to ensure clarity and to meet specific decision-making
requirements. By combining robust ETL workflows with an intuitive dashboard, PyxGen enables
small and medium organizations to leverage their data effectively and efficiently.

Welcome to the dashboard, Ibuschert!

Transformations saved

Source

Location: 127.0.0.1

Set Source Location
Format: csv

Set Source Format

Repository

Location: ipadd

Set Repository Location

Database: immunization

Set Database

Table: immunization

Set Table

Transformations

Selected: FHIR

	Orchestrating ETL for a User-Facing Portal: An Integrated Narrative
	Extraction Layer
	Transformation Layer
	Loading Layer
	Orchestration with Celery
	Scalability and Modularity
	Dashboard Integration
	Conclusion

